TDA2003 2ch-Amplifier package IC Product information Manufacturer ST microelectronics ASIN B073YDFJRC Item model number pcb board Customer Reviews: 5.0 out of 5 stars. TDA2002/TDA2003 Mono Amplifier PCB 1 Kit (Local) Rain Detection PCB Kit (Local) රු 0.40 – රු 45.00 Battery Rechargeble 3.7V 5000mAh 18650 Li-Ion (Not original, capacity might vary) රු 380.00. TDA2003 2ch-Amplifier package IC Product information Manufacturer ST microelectronics ASIN B073YDFJRC Item model number pcb board Customer Reviews: 5.0 out of 5 stars 2 ratings. 5.0 out of 5 stars Best Sellers Rank #13,300 in Computer Cable Adapters.
Amplificador Con Tda2003 Pcb
See, this is a TDA2003 amplifier circuit, popular IC from SGS Thomson.
Why we should use this? It is the normal operation of the integrated circuit, the music amplifier for car audio radio sound.
- Jul 13, 2018 - How to make Amplifier using ic TDA2003 for subwoofer-left-right speaker 12V DC You can download PCB here: download.
- TDA2003 Ver1.0 9 Figure 20. Output power and drain Figure 21. Output power and drain current vs. Case temperature(RL=4Ω) current vs. Case temperature(RL=2Ω) PRATICAL CONSIDERATION Printed circuit board.
Which uses a supply voltage from a 12V car battery. But this circuit is adapted for use in a home. With changing the power supply voltage to 18V.
So, this IC can easily deliver 10W to a 4Ω load speaker.
Read also: TDA2004 – TDA2005 subwoofer Bridge Amplifier circuit diagram
Datasheet in short
Look at TDA2003 looks like TDA2030.
Cre photo: Exiron
TDA2003 Pinout and symbol
Then, see its Circuit connection or symbol below.
We will see that it looks like TDA2030.
The maximum output power and relationship
Do you want to know the output power of this chip? If, Yes look at the graph below.
It shows the relationship between power out and applied voltage.
We will notice how the 8 watts only applies to a 4 ohms speaker. And, results when the applied voltage (VS) is about 18V.
We can use load is 1.6 ohms to 4 ohms speaker impedances.
Then, if we change load is an 8 ohms speaker, the power is practically halved.
This feature is a good side, right? It means that you can parallel:
Skema Pcb Tda2003
- Two 8-ohm speakers
- Four 8-ohm speakers
- Two 4 ohms speaker.
They still get the same power. Or loudness emerging from each speaker.
We may place four 8 ohm speakers in parallel to output.
The volume is quite sufficient for the people in the assembly room and the volume control was only about half.
The clarity and bass response was exceptional. The figure distortion up to 5 watts is 0.2%.
In the datasheet, If you use 14.4V of VS.
In fact, the amplifier has very good figures up to 8 watts with a 2 ohms speaker and 6 watts with a 4-ohm speaker.
Once these limits are reached, the distortion level increases rapidly to 10%.
And at this level, the average person can noticeably hear that something is wrong.
How TDA2003 circuit works
See in the circuit below we will learn how it works. The output power is more than about 10 watts RMS.
And the TDA2003 can protect from damage and short circuits. When the load over.
And, Maximum Voltage of 28 volts. At the frequency response 40 Hz to 15 kHz.
The external components required for the power amplifier are either for feedback, decoupling or high-frequency suppression.
The amplifier itself is of a highly stable design with an enormous open-loop gain.
What is more? Let’s learn.
Here is step by step a process in each component.
Input capacitor
C1: The 4.7 uF electrolytic at the input. It is designed to AC couple the amplifier to a source such as a tuner or any audio signal.
The C1- 4.7 mfd input capacitor allows the circuit to operate without and DC shift occurring.
We may add the volume control to the input. And must be placed before the capacitor.
The power filter capacitor
See at the power rail has a C7: 1,000uF electrolytic and C6: 0.1uF capacitor across it.
The C7 is a storage capacitor for supplying high currents during peak passages. And, it also reduces the power supply ripple.
The C6 capacitor is quite important. It can prevent a form of oscillation from occurring at risky power supply impedance levels.
Frequency Cut-off
The C3: 0.039uF and R1: 39 ohms resistor form the negative feedback network.
The value of C is designed to set the upper-frequency cut-off.
And a larger value of C3 will reduce the maximum frequency.
The R1 also sets the high frequency cut off point and if reduced in value, oscillation may occur.
The gain setting
The actual gain of the amplifier is set by the ratio of the 220-ohm resistor and 2.2-ohm resistor.
If you like the TDA2003. And want to try it. See:
Read next: TDA2009 Amplifier stereo 10W | High Bridge 28 watts
Parts you will need
- IC1: TDA2003, 10-watt audio amplifier IC
Electrolytic Capacitor - C1: 4.7uF 25V
- C2: 470uF 25V
- C4,C7: 1,000uF 25V
Ceramic Capacitor - C3: 0.039uF 50V
- C5, C6: 0.1uF 50V
0.5W Resistors, tolerance: 5% - 39 ohms
- 220 ohms
- 2.2 ohms
- 1 ohm
- SP1: 2 ohms to 8 ohms Speaker
When entering the power supply 15 volts to the circuit. The C1 coupling audio signal through the VR1 to adjust the volume. Then sent to the C2 anti-noise DC input signal to pin 1 of IC. The non-inverting amplifier circuit is a non-return phase. This is the signal output pin 4, by a C5 enhances the stability of low-frequency response the better. And the noise will be dropped down to the ground by R4 and C6 before outputting to speakers. Another part of the output signal, which is fed back through C3, and R1, to enter the pin 2 inverting. To maintain a constant frequency response at-3dB. And if you want to add. The frequency response is to reduce the C3. The C8 is a filter file before the operation.C7 cut out noise from the supply. If you want a stereo amplifier,Is to create an additional set.
Read others: Thanks Credit: 8-watt amplifier using TDA2002 on Talking Electronics No.9
New design by Mark
Mr. Make saids”…
I found that the gain section limits the amplifier from performing truly. So I used a 1k resistor with a 470uf capacitor to ground from pin 2. I didn’t place any feedback resistor and it works quite well.
I am proud of his parent. He will have a good career future.
Thanks for sharing!
Here are a few related posts you may find helpful, too:
Related Posts
GET UPDATE VIA EMAIL
I always try to make Electronics Learning Easy.